2,040 research outputs found

    An assessment of the use of antimisting fuel in turbofan engines

    Get PDF
    An evaluation was made on the effects of using antimisting kerosene (AMK) on the performance of the components from the fuel system and the combustor of current in service JT8D aircraft engines. The objectives were to identify if there were any problems associated with using antimisting kerosene and to determine the extent of shearing or degradation required to allow the engine components to achieve satisfactory operation. The program consisted of a literature survey and a test program which evaluated the antimisting kerosene fuel in laboratory and bench component testing, and assessed the performance of the combustor in a high pressure facility and in an altitude relight/cold ignition facility

    NASA/Pratt and Whitney experimental clean combustor program: Engine test results

    Get PDF
    A two-stage vorbix (vortex burning and mixing) combustor and associated fuel system components were successfully tested in an experimental JT9D engine at steady-state and transient operating conditions, using ASTM Jet-A fuel. Full-scale JT9D experimental engine tests were conducted in a phase three aircraft experimental clean combustor program. The low-pollution combustor, fuel system, and fuel control concepts were derived from phase one and phase two programs in which several combustor concepts were evaluated, refined, and optimized in a component test rig. Significant pollution reductions were achieved with the combustor which meets the performance, operating, and installation requirements of the engine

    Lean, premixed, prevaporized fuel combustor conceptual design study

    Get PDF
    Four combustor concepts, designed for the energy efficient engine, utilize variable geometry or other flow modulation techniques to control the equivalence ratio of the initial burning zone. Lean conditions are maintained at high power to control oxides of nitrogen while near stoichometric conditions are maintained at low power for low CO and THC emissions. Each concept was analyzed and ranked for its potential in meeting the goals of the program. Although the primary goal of the program is a low level of nitric oxide emissions at stratospheric cruise conditions, both the ground level EPA emission standards and combustor performance and operational requirements typical of advanced subsonic aircraft engines are retained as goals as well. Based on the analytical projections made, two of the concepts offer the potential of achieving the emission goals; however, the projected operational characteristics and reliability of any concept to perform satisfactorily over an entire aircraft flight envelope would require extensive experimental substantiation before engine adaptation can be considered

    Evaluation of Federal Aviation Administration ion engine exhaust sampling rake

    Get PDF
    A FAA exhaust emissions rake was tested in the Experimental Clean Combustor Program, Phase 3 to permit comparison of the values of gaseous emissions and smoke measured by the FAA rake with those measured with the NASA Pratt and Whitney Aircraft (P and WA) rake used in the Phase 3 Experimental Clean Combustor Program and with station seven probes. The results showed that the levels of CO, THC, NOx and smoke measured by the FAA and NASA/P and WA rakes agree well at high power, but that CO emissions measured by the FAA rake were approximately 10 percent higher than those measured by the NASA/P and WA rake at low power

    Secure self-calibrating quantum random bit generator

    Get PDF
    Random bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require "strong" RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographic method to measure a lower bound on the "min-entropy" of the system, and we employ this value to distill a truly random bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled.Comment: 5 pages, 2 figure

    Lean, premixed, prevaporized combustor conceptual design study

    Get PDF
    The seven month study program has the objective to identify and evaluate promising lean, premixed, prevaporized combustor concepts utilizing variable geometry and/or other flow control techniques. The general approach taken to accomplish this objective is outlined and consists of combustor design, design analysis and design ranking. The schedule being taken to achieve this program is shown. Although the ultimate goal of this program is the significant reduction of cruise oxides of nitrogen, both the EPA emission standards and combustor performance levels outlined are retained as goals as well

    On the central helium-burning variable stars of the LeoI dwarf spheroidal galaxy

    Full text link
    We present a study of short period, central helium-burning variable stars in the Local Group dwarf spheroidal galaxy LeoI, including 106 RR Lyrae stars and 51 Cepheids. So far, this is the largest sample of Cepheids and the largest Cepheids to RR Lyrae ratio found in such a kind of galaxy. The comparison with other Local Group dwarf spheroidals, Carina and Fornax, shows that the period distribution of RR Lyrae stars is quite similar, suggesting similar properties of the parent populations, whereas the Cepheid period distribution in LeoI peaks at longer periods (P \sim 1.26d instead of ~0.5d) and spans over a broader range, from 0.5 to 1.78d. Evolutionary and pulsation predictions indicate, assuming a mean metallicity peaked within -1.5<= [Fe/H]<=-1.3, that the current sample of LeoI Cepheids traces a unique mix of Anomalous Cepheids (blue extent of the red--clump, partially electron degenerate central helium-burning stars) and short-period classical Cepheids (blue-loop, quiescent central helium-burning stars). Current evolutionary prescriptions also indicate that the transition mass between the two different groups of stars is MHeF \sim 2.1 Mo, and it is constant for stars metal-poorer than [Fe/H]\sim-0.7. Finally, we briefly outline the different implications of the current findings on the star formation history of LeoI.Comment: 5 Pages, 4 Figures, ApJ letter, accepte

    "Magic" numbers in Smale's 7th problem

    Full text link
    Smale's 7-th problem concerns N-point configurations on the 2-dim sphere which minimize the logarithmic pair-energy V_0(r) = -ln r averaged over the pairs in a configuration; here, r is the chordal distance between the points forming a pair. More generally, V_0(r) may be replaced by the standardized Riesz pair-energy V_s(r)= (r^{-s} -1)/s, which becomes - ln r in the limit s to 0, and the sphere may be replaced by other compact manifolds. This paper inquires into the concavity of the map from the integers N>1 into the minimal average standardized Riesz pair-energies v_s(N) of the N-point configurations on the 2-sphere for various real s. It is known that v_s(N) is strictly increasing for each real s, and for s<2 also bounded above, hence "overall concave." It is (easily) proved that v_{-2}(N) is even locally strictly concave, and that so is v_s(2n) for s<-2. By analyzing computer-experimental data of putatively minimal average Riesz pair-energies v_s^x(N) for s in {-1,0,1,2,3} and N in {2,...,200}, it is found that {v}_{-1}^x(N) is locally strictly concave, while v_s^x(N) is not always locally strictly concave for s in {0,1,2,3}: concavity defects occur whenever N in C^{x}_+(s) (an s-specific empirical set of integers). It is found that the empirical map C^{x}_+(s), with s in {-2,-1,0,1,2,3}, is set-theoretically increasing; moreover, the percentage of odd numbers in C^{x}_+(s), s in {0,1,2,3}, is found to increase with s. The integers in C^{x}_+(0) are few and far between, forming a curious sequence of numbers, reminiscent of the "magic numbers" in nuclear physics. It is conjectured that the "magic numbers" in Smale's 7-th problem are associated with optimally symmetric optimal-energy configurations.Comment: 109 pages, of which 30 are numerical data tables. Thoroughly revised version, to appear in J. Stat. Phys. under the different title: `Optimal N point configurations on the sphere: "Magic" numbers and Smale's 7th problem
    corecore